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Abstract 

Objectives: Overeating interventions and research often focus on single determinants 

and use subjective or non-personalized measures. We aim to (1) identify automatically 

detectable features that predict overeating and (2) build clusters of eating episodes that 

identify theoretically meaningful and clinically known problematic overeating behaviors 

(e.g., stress eating) as well as new phenotypes based on social and psychological 

features. 

Method:  Up to 60 adults with obesity in the Chicagoland area will be recruited for a 14-

day free-living observational study. Participants will complete ecological momentary 

assessments (EMAs) and wear three sensors designed to capture features of 

overeating episodes (e.g., chews) that can be visually confirmed. Participants will also 

complete daily dietitian-administered 24-hour recalls of all food and beverages 

consumed. 

Analysis:  Overeating is defined as caloric consumption exceeding 1 standard 

deviation of an individual’s mean consumption per eating episode. To identify features 

that predict overeating, we will apply two complementary machine learning methods: 

Correlation-based Feature Selection and Wrapper-based Feature Selection. We will 

then generate clusters of overeating types and assess how they align with clinically 

meaningful overeating phenotypes. 

Conclusions:  This study is the first to assess characteristics of eating episodes in situ 

over a multiweek period with visual confirmation of eating behaviors. An additional 

strength of this study is the assessment of predictors of problematic eating during 

periods when individuals are not on a structured diet and/or engaged in a weight loss 



intervention. Our assessment of overeating episodes in real-world settings is likely to 

yield new insights regarding determinants of overeating that may translate into novel 

interventions. 
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Introduction 

More than a third (42.4%) of US adults have obesity,1 which can contribute to 

increased risk of chronic diseases and their associated healthcare costs.2 Frequent 

overeating (i.e., consistent intake of excess kilocalories) relative to need is a risk factor 

for obesity.3 Behavioral studies on overeating often focus on a single putative causal 

mechanism or proximal determinant (e.g., stress, emotion, environment).4, 5 However, 

recent advances in wearable sensing have enabled researchers to identify more 

complex feature patterns that characterize episodes of excess calorie intake.6-11 This 

approach increases researchers’ ability to detect excess energy intake with respect to 

various behavioral phenotypes (e.g., emotional eating, mindless eating) that will have 

different treatment implications.12, 13 Through the study design described in this paper, 

we will apply a new objective sensing system to characterize overeating phenotypes 

and identify in-the-moment predictors of overeating. We lay groundwork to detect, 

predict, and intervene in a manner that adapts to an individual’s problematic overeating 

profile, thus paving the way toward personalized behavioral medicine interventions. 

Previous sensing systems advanced the field of overeating in that they were 

designed to capture proxies to eating episodes such as feeding gestures,14 chewing 

activity,9 swallows.10, 15 These activities were captured using varying sensing modalities 

ranging from the use of sound waves around the ear,11, 16 visual cues of the behavior, all 

the way to the movement of the hand and vibrations at the temporalis muscle.11, 17-19 Yet 

these devices: 1) were only tested in a controlled lab setting which limits external 

validity;20 2) required heavy participant burden (e.g., participants taped sensors on their 

bodies21 or had to turn the system on and off during eating22); and 3) did not capture 



meaningful and interpretable features about the physical and psychological contexts of 

eating episodes.23 To address these challenges, we use the SenseWhy passive eating 

detection system to gain new insight into overeating episodes. SenseWhy comprises a 

well-tested customizable neck-worn sensor (NeckSense),10, 17, 24, 25 location through 

GPS, Ecological Momentary Assessments (EMAs), and an advanced privacy-sensitive 

video camera with infrared sensing to enable heat signatures (chest-mounted to collect 

visual confirmation of diet, behavior, and the environment). Our current observational 

study will apply this system to all eating episodes in a free-living setting, in hopes of 

identifying overeating episodes within the context of an individual’s daily life. 

A rapidly growing body of research has begun to characterize predictors of 

problematic eating behaviors, including overeating episodes, using EMA. In these 

studies, self-reported affect,26-28 environmental triggers (e.g., social cues, presence of 

palatable foods),27 and cravings/hunger have been found to be associated with dietary 

lapses,27, 29 eating unhealthy foods,28 and/or overeating.26 By virtue of its collection of 

real-time contextual data surrounding overeating episodes, the SenseWhy system will 

yield new insights about the predictors and characteristics of overeating episodes. The 

present study will extend previous research by evaluating a wide range of passively 

detected features of eating episodes and EMA reports of eating behavior, specifically in 

the contextual factors of overeating with respect to obesity status.  

We will also use the SenseWhy system to detect problematic eating phenotypes 

that are identified by causal mechanisms or proximal determinants. Many people 

engage in emotional eating (or stress eat) as a means of dealing with psychological 

stress, as opposed to satisfying hunger. Eating in the absence of hunger (EAH) refers to 



the susceptibility to eat despite being satiated, often in response to the presence of 

palatable snack foods; which is associated with weight gain over two months.30 EAH 

has been shown to be highly related to hedonic eating,31 which refers to one’s desire to 

consume food for pleasure, in the absence of caloric need. Cognitive restraint refers to 

conscious restriction of food intake in order to control body weight or to promote weight 

loss.32 and uncontrolled eating refers to the tendency to eat more than the usual 

because of loss of control. Unplanned (over)eating refers to an individual eating more 

than what was originally intended, and can be due to many reasons mentioned above 

including positive social interactions, negative emotions, or physiological craving.33 

Mindless eating often occurs when the mind is distracted and the person is not aware of 

what or how much food he or she is consuming. Mindless eating is associated with 

environmental factors, such as screen time and presence of food advertisements, and 

internal factors, such as disinhibition (due to boredom), lack of awareness (the mind is 

racing about what one needs to do), and emotional eating.34  Night eating is a condition 

where people eat large amounts of food after dinner, often waking up during the night to 

eat. As described above, several of these problematic eating types overlap. However, it 

remains unknown how much they overlap, whether they share common causes, and 

which phenotypes are automatically detectable. Through the SenseWhy system, we will 

be able to assess characteristics of eating episodes that are indicative of these 

phenotypes as well as predictors of these various types of eating episodes. For 

instance, perhaps mindless eating is also accompanied by high amounts of stress. 

Redefining overeating behavioral phenotypes in a way that is automatically detectable 

will pave the way for developing and testing timely and adaptive interventions.  



Within a 14-day observational study of eating episodes of adults with obesity, the 

primary aim of this project is to identify a subset of automatically detectable features 

that predict overeating episodes. EMA reports of affect, stress, hunger, and contextual 

factors, along with passively detected features (e.g., time, feeding gestures) will be 

analyzed via machine-learning algorithms to determine which features, both individually 

and jointly, predict overeating. These analyses with be performed using both isolated 

and combined data collected from EMA and passive detection. This integrated 

approach will allow us to determine whether and how predictions of overeating episodes 

change based on data sources. The secondary aims are to use the data to build 

clusters of overeating and eating episodes that identify problematic overeating 

behaviors (e.g., stress eating, social eating, and night eating), and to explore new 

phenotypes based on social (with friends, family, alone, etc.) and psychological (affect, 

craving) features that make up the overeating clusters. 

 

METHODS 

Participants 

We are recruiting up to 60 participants. Eligible participants are adults with 

obesity (BMI≥ 30 kg/m2), between the ages of 18 and 65 years, who reside in the 

Chicago Metropolitan Area, own a smartphone, and have wireless internet at their 

residence. Participants are excluded if they are: currently dieting with the goal of losing 

weight; have lost 15 or more pounds in the previous three months; are, or plan to 

become, pregnant; have received, or plan to receive, bariatric or lap band surgery; 

currently take any medication that causes weight loss; have a genetic weight loss 



disorder (e.g., Prader-Willi, Bardet-Biedl, Cohen Syndrome); or have an active eating 

disorder. Who also exclude participants found to be susceptible to loss-of-control (LOC) 

eating when screened via interview because LOC eating is strongly connected to binge 

eating and other mental health disorders, and as a result warrants a separate study and 

likely requires more intensive intervention than we anticipate building through our 

mobile eating detection systems. 

 

Recruitment 

Participants are recruited on a rolling basis using online advertisements hosted 

on Craigslist.com, ResearchMatch, and TheNewNormal. Respondents who complete 

the REDCap35 web screener are contacted by the study team if their provided 

information aligns with the study’s eligibility criteria. Flow from recruitment to all other 

phases of the study is depicted in Figure 1. 

 

<INSERT FIGURE 1>  

 

Telephone screening 

Respondents are assessed for disordered eating behaviors with multiple 

validated measures. The eating disorder module of the Patient Health Questionnaire 

(PHQ)36 assesses the presence of active eating disorders.37 Additionally, a trained 

investigator administers the loss of control assessment of the Eating Disorder 

Examination (EDE).38 The combination of PHQ self-report items and investigator follow-

on questions drawn from the EDE is considered the gold-standard approach to the 



assessment of disordered eating behaviors.39 If any disordered eating behaviors are 

present during screening, the respondent is excluded from participation in the study. 

Otherwise, participants are scheduled for a baseline appointment. 

 

In-person baseline appointment 

Upon participants’ arrival to the lab, informed consent is conducted as approved 

by the institutional review board (IRB). The study coordinator collects one weight and 

three height measurements using a standard analog scale (Detecto mechanical eye-

level physician scale with height bar). The weight measurement and the mean of the 

height measurements are used to calculate BMI, confirming that the participant indeed 

meets the study criteria of BMI ≥ 30 kg/m2, at which point they become officially enrolled 

in the study. 

Once enrolled, participants are instructed on the use of all study technology. 

 

Foodtrck app.  After downloading the Foodtrck eating-recording app from its 

appropriate public listing (see Appendix), participants log in and complete an entry of a 

meal that the study team gives them in lab. Participants receive teaching and 

supervision as they use the FoodTrck app before and after the in-lab eating episode 

(described below and in Figure 2). 

 

   <INSERT FIGURE 2> 

 



Study devices.  Participants are introduced to the four study devices (i.e., 

necklace, smartwatch, infrared activity-oriented device [IR- AOD] that provides visual 

confirmation of the meals, and study phone) and instructed on their usage, including 

turning on each device, verifying device functioning, wearing the devices at the 

appropriate on-body position, ending recording, removing devices, and connecting the 

devices to their chargers. Participants complete a ‘role-play’ teaching exercise in which 

they practice the start-collection and end-collection procedures 3 times each. Lastly, 

participants are informed of the circumstances in which they are allowed to remove the 

study devices (during water exposure, vigorous exercise, etc.). 

 

Sync event. The sync event is intended to introduce an explicit synchronization 

point which is identifiable across sensor modalities to make sure all devices are 

capturing the same moment.  Participants are also instructed on how to perform a sync 

event,40 which they are asked to complete daily, immediately following the start of each 

recording period. To establish ground truth for the time-of-day, participants hold a 

smartphone application with a digital clock interface in the field of view of the IR-AOD, 

which captures the displayed time. Participants then perform three gestures. The first 

gesture involves participants covering the necklace with their hand three times, for 1 

second each time. This creates a series of three near-zero proximity measurements that 

can be easily spotted in the proximity signal output of the necklace as well as the 

synchronized IR-AOD video, which provides visual confirmation of the hand gesture. 

The second activity involves participants clapping their hands in front of themselves (as 

if applauding) three times. These claps, as fast wrist motions followed by sudden stops, 



can be spotted in the smartwatch IMU signals as well as in the synchronized IR-AOD 

video, which provides visual confirmation of the clapping gesture. The final gesture 

involves participants either drinking from a glass or miming the action of drinking from a 

glass. This activity appears in the output of all three sensors: appearing visually to the 

IR-AOD, appearing in the lean-forward-angle and proximity signal of the necklace, and 

appearing in the accelerometer (hand-to-mouth) and gyroscope (glass tilting) signals of 

the smartwatch.  

 

In-wild phase 

After the in-lab session is completed, the in-wild phase of the study begins the 

following morning (see Figure 3). Participants are instructed to wear the devices 

throughout all waking hours, answer questions and record all food and beverage 

consumption with the Foodtrck app and complete an interviewer- administered 24-hour 

diet recall each day (beginning on Day 2). Recalls are initiated by the interviewer within 

the windows/window of availability provided to the study team by participants during the 

initial visit. 

 

<INSERT FIGURE 3> 

 

The experimenter monitors participant adherence to these instructions by 

checking heartbeat notifications (an indication of what time each device was last turned 

on), Foodtrck entries, and diet recall completion. If adherence indicators are absent, the 

experimenter contacts the participant to determine the cause of the lapse and provide 



reminders and/or technical support as necessary. If a participant is unable to perform all 

3 tasks (wear devices, record meals, complete recalls) for at least 6 of the first 7 “run-in” 

in-wild days; the run-in period is considered failed, and the participant is withdrawn from 

the study. After 14 days of in-wild collection conclude, participants are asked to drop off 

the devices, have a final weight measurement taken, and complete a series of 

questionnaires (listed in Table 2 under "post survey" study element). 

 

 

 

Measures 

Devices  

Infrared Activity-Oriented Device (IR-AOD).  The IR-AOD is a wearable camera 

developed by the HABits Lab to maximize information collection and minimize user 

discomfort (both physical and psychological)41, 42 and risks to privacy.43 The IR-AOD is 

worn on a lanyard and secured to the upper-center area of the chest by a magnetic pad 

that connects to the back of the device behind the shirt/outermost layer of clothing. The 

top surface of the IR-AOD, a flat plane parallel to the ground, contains an upward-facing 

sensor array including a thermal infrared sensor, a red-green-blue (RGB) camera with a 

180° fisheye lens, and a photoresistor-triggered infrared light emitting diode (IR LED) as 

a source of illumination for night vision. Each sensor is directed toward the face and 

upper torso of the wearer. When the IR-AOD is turned on, all three sensors record 

continuously to an onboard memory card. 

 



NeckSense.  NeckSense is a neck-worn sensor device that is principally 

designed to capture and quantify chewing. NeckSense is worn on a short, necklace-

type lanyard, and is positioned at the base of the neck. The top surface of the necklace, 

a flat plane parallel to the ground, hosts an upward-facing Infrared proximity sensor that 

records at 20Hz (20 measurements a second). The positioning of NeckSense at the 

base of the neck allows the proximity sensor to capture the mouth open/close status of 

the wearer by recording the distance between the device and the bottom of the chin. In 

addition to the proximity signal, NeckSense continuously records ambient light (LUX), 

lean-forward angle (LFA), and triaxial accelerometer data, saving all collected data to an 

onboard memory card. 

 

Wrist-Based Recording System.  The wrist-based recording system consists of a 

commercial Fossil Smartwatch loaded with a customized data collection app that makes 

use of the watch’s onboard sensors. The watch is worn on the dominant wrist, 

positioned two finger-lengths below the bottom of the palm. The wrist collection system 

records triaxial accelerometer data, triaxial gyroscope data, and photoplethysmography 

(PPG) data. Each of these measurements are recorded at 20Hz and saved to the 

watch’s onboard memory card. Each time the watch is charged, it transmits its data to a 

paired cell phone, which then transmits the data to a secure cloud server maintained by 

the research team. 

 

App-delivered EMA surveys 



The FoodTrck app is installed on participant’s personal phones and facilitates 

both dietary self-reporting and the delivery of targeted EMAs. To record a meal, snack, 

or beverage; the user creates a new entry on the FoodTrck home screen and begins 

completing the three surveys: 

Decided To.  Participants are instructed to complete the “Decided to” survey as 

soon as possible after they have decided to eat/drink and know what they will eat/drink 

(but does not necessarily have the food/drink in front of them, ready to consume. The 

“Decided to” survey contains EMA items on food source, affect, and presence of 

biologic hunger or hedonic eating. 

 

About to.  Participants are instructed to complete the “About to Eat” activity 

immediately prior to eating/drinking by taking a photo of all food/beverage items to be 

consumed and entering a descriptive name. 

 

After.  Participants are instructed to complete the “After” survey immediately after 

they finish eating/drinking. The “After” survey involves taking a photo of the remaining 

food/drink or empty food/drink containers, entering a descriptive name, answering 

questions about affect, cognitive restraint, uncontrolled eating, contextual or 

environmental factors (e.g., eating alone or with others, watching T.V., whether at home 

or work).  

 

Photo-assisted 24-hour diet recall  



Starting on the second day of the free-living period, a 24-hour diet recall using 

the 5-step Automated Multiple-Pass Method will be  administered via telephone by a 

trained interviewer with nutrition expertise.44 The objective of the 24-hour recall is to 

collect a complete account of everything the participant consumed or drank the previous 

day. Before the call, dietitians can access the photographs and food/drink descriptions 

recorded by participants using the FoodTrck app. During the interview, the dietitian will 

complete steps that has been shown to enhance the accuracy of the recall, including 1) 

developing a quick list of foods and beverages consumed, 2) probing for commonly 

forgotten food items, 3) collecting time and name of each eating occasion, 4) collecting 

and reviewing details of food and beverages, and 5) completing a final probe.45 Images 

from the FoodTrck app will assist with probes during steps 2 to 4. Information gathered 

during 24-hour recalls is analyzed using the Nutritional Data System for Research 

(NDSR), a research-based nutrition software developed to collect and analyze 24-hour 

diet recalls.46 

 

Data Processing 

Alignment of multiple data sources  

Data collected by wearable devices are evaluated for synchronization by 

referencing the Sync Event at the beginning of each day. The time displayed on the cell 

phone (visible in the video data) provides the ground truth timestamp to which the data 

streams are compared and offsets are corrected. If a Sync event is missing for a given 

wear period, the evaluator attempts to identify other natural occurrences of gestures 

that can be recognized across sensor modalities or compare the timestamp of a 



FoodTrck entry to the timestamp of the video frame in which the participant’s completion 

of the entry appears. Once video timestamps are known to be aligned with the phone, 

the video timestamps are then used as ground truth. These methods allow us to 

establish accurate start and end times of activities, which is critical for building reliable 

machine-learning algorithms that detect human behaviors (e.g., feeding gestures, bites 

[see Table 1]) by learning from training data in which these behaviors are visually 

confirmed using multiple video annotators. 

 

<INSERT FIGURE 4> 

 

Labeling procedures  

Labels of events captured by the IR-AOD (video data) are generated by trained 

annotators using a labeling guide. The annotators identify eating episodes in the video 

data and assign the appropriate label to each of the episode’s preselected fine-grained 

elements. Duration and point labels indicate the time and date of the labeled event. 

These labels capture participant behaviors and define the start and end times of eating 

episodes. Table 1 includes of list and description of each of these features.  

 

Table 1. Features of meals collected by study measures. 

Feature Description Label Data Source 
Behavioral 

    

Feeding 
Gesture 

Hand brings food to 
mouth and returns to 
rest 

Start and end time 
of each feeding 
gesture 

Count and frequency of 
feeding gestures per meal  

Visual (IR-AOD) 

Bite Jaw open/close as food 
enters mouth 

Timestamp of the 
bite 

Count and frequency of 
bites per meal  

Visual (IR-AOD), 
Proximity 
(NeckSense) 



Chew Consecutive jaw 
open/close sequence 
while food in mouth 

Timestamp of the 
chew 

Count and frequency of 
chews per meal  

Visual (IR-AOD), 
Proximity 
(NeckSense) 

Swallowing Chin tilt up/down, throat 
vibrations as food is 
ingested 

Inferred by cluster 
of consecutive 
chews 

Count and frequency of 
swallows per meal 

Visual (IR-AOD), 
Proximity 
(NeckSense) 

Eating Duration End time of episode - 
start time of episode 

Start and end time 
of each feeding 
gesture 

Length of feeding gesture 
per meal 
Min/Max/Average/STD 

Visual (IR-AOD), 
Self-report 
(Phone, Recall) 

Physiological 
    

Heart Rate 
Variability 

Interpulse-interval 
variability 

Interpulse-interval 
between systolic 
peaks from PPG  

Physiological Stress level Photoplesthmogra
phic (Wrist) 

Heart Rate Heart beats per minute Count of systolic 
peaks from PPG  

Heart rate (average) 
1) Before meal (30s) 
2) After meal (30s) 
3) During the meal 

Photoplesthmogra
phic (Wrist) 

Social 
    

Time of Day HH:MM:SS Start and end time 
of each meal 

Time of day of meal 
(morning/afternoon/night) 

Visual (IR-AOD) 
Self-report 
(Phone, Recall) 

Environment 
(social) 

eating alone, eating 
with others 

Social eating 
(FoodTrck) 

Social eating (Binary) Self-report 
(Phone) 

Location (type) work, home, school, 
other 

Social eating 
(FoodTrck) 

Locations of social eating 
(Categorical) 

Self-report 
(Phone) 

Screen Time eating in presence of 
screen (TV, computer, 
phone, etc.) 

Social eating 
(FoodTrck) 

Presence of screen 
(Binary) 

Visual (IR-AOD), 
Self-report 
(Phone) 

Bystander other person/s present 
in area 

Social eating 
(FoodTrck) 

Scales from social eating 
(Categorical) 

Visual (IR-AOD) 

Psychological 
    

Stress Stress level during 
eating 

Stress (FoodTrck) Perceived Stress from 
FoodTrck self-report (Likert 
Scale) 
1) Before meal 
2) During meal 
3) After meal 

Self-report 
(Phone) 

Cognitive 
Restraint 

Stopped eating to 
manage calorie intake 

Cognitive Restraint 
(FoodTrck) 

After meal Cognitive 
Restraint (Likert scale) 

Self-report 
(Phone) 

Uncontrolled 
Eating 

Perceived inability to 
stop oneself from 
eating 

Uncontrolled Eating 
(FoodTrck) 

LOC (Likert scale) Self-report 
(Phone) 

Overeating Eating more than 
intended 

Overeating 
(FoodTrck) 

Subjective overeating 
(Likert scale) 

Self-report 
(Phone) 



Biological 
Hunger 
(Craving) 

Desire for food 
motivated by hunger 

Biological Hunger 
(FoodTrck) 

Hedonic Eating vs 
Biological Hunger (Likert 
scale) 

Self-report 
(Phone) 

Hedonic Eating Desire for food 
motivated by 
taste/pleasure 

Hedonic Eating 
(FoodTrck) 

Hedonic Eating vs 
Biological Hunger (Likert 
scale)  

Self-report 
(Phone) 

Emotion - 
Stressed/Anxio
us 

Degree of feeling 
"Stressed/Anxious" 

Stressed/Anxious 
(FoodTrck) 

Emotional (Likert scale) Self-report 
(Phone) 

Emotion - 
Down/Lonely 

Degree of feeling 
"Down/Lonely" 

Down/Lonely 
(FoodTrck) 

Emotional (Likert scale) Self-report 
(Phone) 

Emotion - 
Upbeat/Excited 

Degree of feeling 
"Upbeat/Excited" 

Upbeat/Excited 
(FoodTrck) 

Emotional (Likert scale) Self-report 
(Phone) 

Emotion - 
Calm/Peaceful 

Degree of feeling 
Calm/Peaceful 

Calm/Peaceful 
(FoodTrck) 

Emotional (Likert scale) Self-report 
(Phone) 

Social Eating Presence of other 
people during meal 

Social Eating 
(FoodTrck) 

Social eating (Binary) Self-report 
(Phone) 

Activity co-
occurrence 

Other activities 
performed while eating 

Other (FoodTrck) Other activities 
(Categorical) 

Self-report 
(Phone) 

 

Foodtrck data processing  

Foodtrck entries are assigned to eating episodes based on corresponding 

timestamps. Foodtrck provides contextual, psychological, and geospatial information 

about a given eating episode (see Table 2). Contextual features of an eating episode 

collected by EMA surveys in Foodtrck are stored in an SQL database and attached to a 

specific eating episode as attributes.  

 

 

Table 2. Measures employed in the study. 

Study 
element Construct Description Measure (reference) 

Web screener Demographics Age, self-reported height and weight, ethnicity, 
race, residence location/type Developed by HABits Lab 

In-Lab Anthropometrics Height, weight 
Detecto Mechanical 
Metric-only Eye-Level 
Physician Scale with 
Height Rod 

FoodTrck  
— Pre-meal Pre-meal stress Perceived stress before a meal Developed by HABits Lab 



 Affect Perceived affective state before a meal 
Adapted from Emotion 
Circumplex model of 
Affect47 

 Eating in Absence of 
Hunger Desire for food before a meal 

Adapted from Emotion 
Circumplex model of 
Affect47 

 Hedonic Eating Degree to which pleasure seeking motivates 
upcoming meal Forman et al. 201727 

 Biological Hunger Degree to which hunger satisfaction motivates 
upcoming meal Forman et al. 201727 

 Pre-meal food 
description 

Self-reported name of food/drink items to be 
consumed Forman et al. 201727 

— Post-meal Post-meal stress 
Subjective stress score (1-5) assessed before 
each meal via FoodTrck app 

Forman et al. 201727 

 Cognitive Restraint Whether participant purposely stopped eating to 
avoid weight gain/cut calories Manasse et al. 201813 

 Uncontrolled Eating Perceived inability to stop oneself from eating Manasse et al. 201813 

 Overeating Whether participant ate more than intended 
(subjective overeating) Manasse et al. 201813 

 Hedonic Eating Amount of pleasure experienced while eating Forman et al. 201727 

 Social Eating Presence/absence of other people during meal Forman et al. 201727 

 Activity co-
occurrence Other activities performed while eating Forman et al. 201727 

 Location type Type of location (work, home, school, etc.) Developed by HABits Lab 
 Post-meal food 

description 
Self-reported name of food/drink items remaining 
after meal Forman et al. 201727 

24-hour Diet 
Recall 

Eating episode time 
and Location Time meal began and location consumed Developed by HABits Lab 

 Meal content Food/drink types and amounts consumed during 
meal 

Nutrition Data System for 
Research (NDSR)46 

 Nutritional content Breakdown of caloric and nutrient values of 
food/drink items consumed 

Nutrition Data System for 
Research (NDSR)46 

Post-survey User Burden User experience and judgement of each 
wearable device 

User Burden Scale 
(UBS)48 

 Hedonic Eating Propensity to eat for pleasure (in general) Power of Food Scale 
(PFS)49 

 Emotional Eating 
Propensity to eat when experiencing certain 
emotions (in general) 

Dutch Eating Behavior 
Questionnaire (DEBQ)50  

 Overeating Propensity to overeat and/or binge eat (in 
general) 

Binge-Eating Disorder 
Screener (BEDS-7)51  

 Intuitive Eating Propensity to eat in response to sensory cues (in 
general) 

Three Factor Eating 
Questionnaire (TFEQ)52  

 

 

NDSR Data Processing and Merging with Foodtrck Data 



Data on each eating episode are downloaded from the NDSR software. Data 

extracted for each eating episode includes time, calories, and macronutrients. These 

data are merged with the Foodtrck datasets using both the participant ID and eating 

episode time variables. We then apply the following exclusion criteria for this merged 

dataset:  

1) exclude participants who dropped out of the study or did not pass the 7-day run-in 

period 

2) exclude eating episodes with missing or incomplete Foodtrck questionnaires 

3) exclude eating episodes with 0 calories (e.g., non-caloric beverages only) 

 

Defining overeating 

In this study, overeating episodes is operationalized as the eating episodes for 

which calories consumed is more than 1 z-score greater than the participant’s average 

calories consumed. This definition essentially operationalizes overeating in a manner 

that is personalized based on the individual’s prior caloric intake distribution, where the 

calories per eating episode are validated by a dietitian. The method, involves capturing 

an individual’s eating across two weeks providing a representation of each individual’s 

eating pattern, yielding percentiles and cut points for overeating. In our previous work, 

we showed that our definition of an overeating episode strongly correlated with 

subjective overeating (Cohen’s Kappa = 0.90, showing high agreement), validated by a 

dietitian.53 In exploratory analyses, we will also test one other definition used in the 

literature, which defines an eating episode to be overeating if it is 1000 calories or 

more.54, 55 



 

Planned analyses 

Parallel analyses will be conducted using the three differing sets of features 

below: 

 

Passive sensing only.  Using machine learning, we will initially build an overeating 

predictive model using passive-sensing only features (representing behavioral and 

physiological features), such as number and frequency of feeding gestures, number and 

frequency of swallows, number and frequency of chews, eating duration, heart rate and 

heart-rate variability (HRV) before the eating episode, heart rate and HRV during the 

eating episode, and time-of-day. 

 

EMA –only.  We will then build a predictive model including EMA social and emotional 

state (expanding the features based on training). This allows us to identify which self-

reported features predict overeating.  See Table X for features captured. 

 

Passive sensing + EMA.  In a third set of analyses, we will then combine passive 

sensing features and EMA when predicting overeating. Because these analyses will 

include the most complete set of features, these analyses will be treated as the main 

analyses for making conclusions about predictors of overeating and characteristics of 

overeating clusters. The preceding analyses are conducted to determine the extent to 

which passive sensing vs. EMA-only analyses lead to different conclusions about 

overeating and whether one type of data may be sufficient. 



 

Identifying Predictive Features of Overeating 

Feature Selection.  To avoid overfitting of the model to the training data, a subset 

of the features for modeling overeating will be selected using two complementary 

methods: 1) Correlation-based Feature Selection (CFS)56 to find the optimal non-

correlated feature set, independent of machine learning algorithm, and 2) Wrapper-

based Feature Selection (WFS),57 to find an optimal feature subset for the Random 

Forest machine learning algorithm, accounting for the possibility of CFS discarding 

potentially useful features that are useful for a specific machine learning algorithm. 

Random Forest is a prominent ensemble-based model that combines a large number of 

weak simple models to obtain a stronger ensemble prediction by averaging (resulting in 

decreased variance) models.58 The output of other feature selection algorithms will also 

be compared with the output of CFS and WFS to ensure highly predictive features are 

included in the model. 

 

Machine-learned Classifiers.59-64 Discriminative classifiers generate machine-

learned models that directly distinguish boundaries through observed data. Once 

features are selected, a discriminative supervised machine learning model such as 

Gradient Boosting Machines (GBMs) will be used. GBMs are a family of machine 

learning methods that have shown success in a wide range of applications in machine-

learning challenges57-59 producing competitive, highly robust, interpretable procedures 

for both regression and classification.60 The principal idea is to construct new base-

learners to be maximally correlated with the negative gradient of a chosen loss function 



(for example: Adaboost loss functions are used for categorical outcome variables). We 

will further compare GBMs to other combinations of discriminative classifiers such as 

logistic regression, support vector machine, random forest, and neural networks, and 

generative classifiers such as Bayesian networks and hidden Markov models. 

Generative classifiers are more indirect in their approach, and often deploy statistical 

models and probability theory, sometimes requiring more a priori knowledge that is 

often unknown, to estimate the probability of each outcome given the observed data. 

 

Evaluation.  Based on our sample size, we will generate a train, validation, and 

test set with a 60:20:20 train:validation:test split ratio. Each classifier will be trained on 

60% of the data, and the hyperparameters of the classifier will be fine-tuned on the 20% 

validation set. We will also perform a ten-fold cross validation (averaging results across 

10 runs with a 90:10 split of the data) will be used when building a model. We will report 

on the Receiver Operator Characteristic Area Under the Curve (ROC-AUC), and select 

the best model generated by the algorithm based on the average F-measure (more 

precise measure of performance that captures precision of the algorithm and recall of 

both overeating and non-overeating episodes).   

 

Identifying Problematic Overeating Phenotypes through Clustering 

Generate Clusters.  To ensure that a cluster represents most overeating 

episodes and not regular eating episodes, the resulting optimal features that detect and 

predict overeating will be used to generate well-separated clusters of regular eating and 

overeating. Our goal will be to use the features to attain high intra-cluster similarity 



(eating episodes in a cluster represent the same label of overeating or non-overeating), 

and low inter-cluster similarity (samples from different clusters are dissimilar) between 

overeating and non-overeating clusters. We will test two algorithms. First, we will use k-

means,43, 65 which is the most widely used partitional clustering algorithm owing to its 

versatility and efficiency time and space complexity. Every aspect of it (initialization, 

distance function, termination criterion, etc.) can be modified; it is guaranteed to 

converge66 at a quadratic rate;67 and it is invariant to data ordering (random shuffling of 

data points). The optimal k-value for the number of clusters is determined by calculating 

the silhouette score,68 which is computed for a given range of k-values and evaluates 

which k value yields clusters that are most representative of the data that comprise 

them. The silhouette score quantifies (between -1 and +1) how similar a given data 

point is to its own cluster, and how dissimilar it is to the other clusters. A silhouette 

score closer to +1 indicates that the data point is well matched to its own cluster and 

poorly matched to its neighbors. Second, we will also compare its performance with an 

agglomerative hierarchical clustering algorithm (which does not require us to prespecify 

the number of clusters) combined with Ward’s minimum variance method (and 

variations of Ward’s method) to minimize the total within-cluster variance. Hierarchical 

clustering techniques will be used to identify well-separated clusters based on their 

similarity matrix, a technique we tested in predicting models for hospital readmission.69  

To determine the best clustering method, we will estimate purity, normalized 

mutual information, rand index, and F measures. We will weight each metric equally, 

when selecting the optimal set of clusters used. The purity of each cluster (a transparent 

evaluation measure), which given a set of K clusters Ω = {𝜔!, 𝜔", … , 𝜔#}, and a set ℂ =



{𝑐!, 𝑐"}, where 𝑐!	represents	overeating, and	𝑐"	represents non-overeating episodes, and 

given N total combined episodes: 𝑝𝑢𝑟𝑖𝑡𝑦(Ω, ℂ) = !
$
∑ max

%
|𝜔& ∩ 𝑐%|& . High purity signifies 

high intra-cluster similarity, but it can result in a high number of clusters (each sample 

being defined by its own cluster achieves high purity), resulting in the need for 

complementary metrics. To finalize our selection of a clustering method, we will 

additionally consider: 1) the Normalized mutual information (NMI) - an information-

theoretical driven approach that uses maximum likelihood estimates and entropy (a 

measure of disorder or uncertainty in the clusters); 2) the Rand index, which penalizes 

both false positives and false negative decisions during clustering; and 3) the F 

measure, which differentially weights these two types of errors. 

 

Identifying Overeating and Non-overeating Clusters.  We will see whether 

theoretically meaningful problematic eating phenotypes occur, by analyzing the feature 

makeup of each cluster (e.g., level of stress, time of day, alone or with friends/family). 

We will further discover new phenotypes by analyzing the relationship between the 

features within each cluster with a significant proportion of overeating episodes. 

Analyzing levels of overeating in the clusters (average value of outcome) indicates risk 

in relation to other clusters.  

We will provide statistics of each cluster, including purity of cluster, percent of 

overeating and regular eating, percent of stress eating, eating in absence of hunger, 

hedonic eating vs. biological hunger, cognitive restraint, uncontrolled eating, and 

overeating. This will allow us to identify how clusters co-occur with each other. We will 

use a personalized definition for each question, where we calculate the average of a 



person’s response, and a value that exceeds the average will be assigned a high and 

others will be assigned a low value. 

 

Discussion 

 The ability to predict and detect overeating episodes creates new 

possibilities for answering pressing research questions and developing state-of-the-art 

weight management interventions. This project aims to produce a rich contextual 

characterization of overeating episodes by combining the use of wearable sensing 

devices, meal-triggered EMAs, and a series of 24-hour recalls of food and beverage 

intake.44  Together, these measures are designed to quantify participants’ diets and 

provide insight into the physiological, contextual, social, and psychological factors that 

surround eating. Through our planned analyses, we will detect which time-varying 

factors are associated with overeating. We will additionally use these factors to identify 

clusters of overeating episodes, potentially leading to new insights regarding the 

predictors of overeating and co-occurrence of clinically meaningful eating phenotypes. 

 Strengths of this study include the use of passive sensing and EMA measures, 

which provide a rich description of in-the-moment behavior while minimizing recall 

biases. The passive sensing system used in this study also has many advantages that 

reduce user burden and promote the collection of high-quality data. This system uses 

multiple sensors to detect multiple proxies to eating to ensure reliable detection and 

characterization of eating behavior. We report the F-measure (a more precise measure 

of performance than accuracy). Our study is the first of its kind because it enables visual 

confirmation in-the-real world over longer periods of time (prior work typically use 



cameras for short durations in the wild), which enables validation and confirmation of 

eating and other user behaviors as well (e.g., screen time, presence of others, and 

presence of secondary activities).70, 71 By combining multiple sensing modalities, long 

device battery life (at least 48 hours for the necklace,25 16 hours for the camera and 24 

hours for the wrist-sensor while collecting data continuously), high customizability,72 and 

minimal degradation of performance in challenging eating environments (i.e., those 

confounded by various activities),14, 17, 25, 73 we are able to provide the community with a 

realistic longitudinal dataset containing multiple characterizations of the eating episode 

against which to build and advance machine learning models for eating detection. 

While several wearable sensors have shown promise in detecting eating in the 

real-world, they have predominantly been validated within a convenience sample, 

primarily in student populations. For systems to truly be generalizable additional data is 

needed from diverse populations, primarily people with varying body mass indeces, that 

is not only student-based or focused on healthy-people. Our recent work has shown that 

models trained on people without obesity perform poorly when applied to people with 

obesity.9 Moreover, people with varied body shapes may experience the system 

differently, varying in reported comfort levels. Our dedication to studying people with 

obesity using wearable sensors enables deeper insight and translation of research to 

practice. To the best of our knowledge we are among the very few to explicity validate 

our automated detection systems in people with obesity. 

Many prior works with sensors in the real-world setting focus on studying people 

while being enrolled in a weight-loss intervention. We are one of the first to study people 

with obesity while telling them to “be themselves as much as possible.” This allows us to 



capture their current problematic eating habits to redefine problematic eating behaviors 

through sensing and EMA. Until we are able to properly understand what constitutes an 

overeating episode, we will not know what to detect and ultimately prevent overeating 

relative to need, a main cause of obesity. This study is not without limitations. To 

characterize overeating, we rely on a recently developed operationalization of 

overeating episodes (i.e., eating episodes with energy intake that are 1 SD above the 

average caloric intake across all eating episodes). This operationalization was selected 

over past measures, including 1) a 1,000-calorie threshold, which is a crude indicator 

that is not sensitive to individual differences in BMI and eating pattern, and 2) whether 

or not a meal had been planned – a label which can then be applied to relatively low-

calorie meals, requires user input to define overeating, and can only be used when 

individuals are on a diet. Our personalized definition of overeating at the episode level is 

consistent with our goal to understand when people consume more than they typically 

consume, paving the way for Just-In-Time Adaptive Interventions for overeating, and it 

strongly agrees with participants’ subjective perceptions53 of which eating episodes 

constitute overeating. This definition assumes that overeating episodes will occur 

among all individuals and at about the same rate. Although this feature of our definition 

does result in some conceptual ambiguity, we note that within a population with obesity 

understanding and predicting eating episodes with the highest energy intake will 

nevertheless be greatly beneficial for designing weight loss interventions. 
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